# The MIT License (MIT)
# Copyright © 2024 Opentensor Foundation
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the “Software”), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
# THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import binascii
import dataclasses
import functools
import hashlib
import math
import multiprocessing
import os
import random
import subprocess
import time
from datetime import timedelta
from multiprocessing.queues import Queue as QueueType
from queue import Empty, Full
from typing import Any, Callable, Optional, Union, TYPE_CHECKING
import numpy
from Crypto.Hash import keccak
from retry import retry
from rich import console as rich_console, status as rich_status
from rich.console import Console
from bittensor.utils.btlogging import logging
from bittensor.utils.formatting import get_human_readable, millify
from bittensor.utils.register_cuda import solve_cuda
[docs]
def use_torch() -> bool:
    """Force the use of torch over numpy for certain operations."""
    return True if os.getenv("USE_TORCH") == "1" else False 
[docs]
def legacy_torch_api_compat(func):
    """
    Convert function operating on numpy Input&Output to legacy torch Input&Output API if `use_torch()` is True.
    Args:
        func (function): Function with numpy Input/Output to be decorated.
    Returns:
        decorated (function): Decorated function.
    """
    @functools.wraps(func)
    def decorated(*args, **kwargs):
        if use_torch():
            # if argument is a Torch tensor, convert it to numpy
            args = [
                arg.cpu().numpy() if isinstance(arg, torch.Tensor) else arg
                for arg in args
            ]
            kwargs = {
                key: value.cpu().numpy() if isinstance(value, torch.Tensor) else value
                for key, value in kwargs.items()
            }
        ret = func(*args, **kwargs)
        if use_torch():
            # if return value is a numpy array, convert it to Torch tensor
            if isinstance(ret, numpy.ndarray):
                ret = torch.from_numpy(ret)
        return ret
    return decorated 
[docs]
@functools.cache
def _get_real_torch():
    try:
        import torch as _real_torch
    except ImportError:
        _real_torch = None
    return _real_torch 
[docs]
def log_no_torch_error():
    logging.error(
        "This command requires torch. You can install torch for bittensor"
        ' with `pip install bittensor[torch]` or `pip install ".[torch]"`'
        " if installing from source, and then run the command with USE_TORCH=1 {command}"
    ) 
[docs]
class LazyLoadedTorch:
    """A lazy-loading proxy for the torch module."""
[docs]
    def __bool__(self):
        return bool(_get_real_torch()) 
[docs]
    def __getattr__(self, name):
        if real_torch := _get_real_torch():
            return getattr(real_torch, name)
        else:
            log_no_torch_error()
            raise ImportError("torch not installed") 
 
if TYPE_CHECKING:
    import torch
    from bittensor.core.subtensor import Subtensor
    from bittensor_wallet import Wallet
else:
    torch = LazyLoadedTorch()
[docs]
def _hex_bytes_to_u8_list(hex_bytes: bytes):
    hex_chunks = [int(hex_bytes[i : i + 2], 16) for i in range(0, len(hex_bytes), 2)]
    return hex_chunks 
[docs]
def _create_seal_hash(block_and_hotkey_hash_bytes: bytes, nonce: int) -> bytes:
    """Create a seal hash for a given block and nonce."""
    nonce_bytes = binascii.hexlify(nonce.to_bytes(8, "little"))
    pre_seal = nonce_bytes + binascii.hexlify(block_and_hotkey_hash_bytes)[:64]
    seal_sh256 = hashlib.sha256(bytearray(_hex_bytes_to_u8_list(pre_seal))).digest()
    kec = keccak.new(digest_bits=256)
    seal = kec.update(seal_sh256).digest()
    return seal 
[docs]
def _seal_meets_difficulty(seal: bytes, difficulty: int, limit: int):
    """Check if the seal meets the given difficulty criteria."""
    seal_number = int.from_bytes(seal, "big")
    product = seal_number * difficulty
    return product < limit 
[docs]
@dataclasses.dataclass
class POWSolution:
    """A solution to the registration PoW problem."""
    nonce: int
    block_number: int
    difficulty: int
    seal: bytes
[docs]
    def is_stale(self, subtensor: "Subtensor") -> bool:
        """
        Returns True if the POW is stale.
        This means the block the POW is solved for is within 3 blocks of the current block.
        """
        return self.block_number < subtensor.get_current_block() - 3 
 
[docs]
class _UsingSpawnStartMethod:
    def __init__(self, force: bool = False):
        self._old_start_method = None
        self._force = force
[docs]
    def __enter__(self):
        self._old_start_method = multiprocessing.get_start_method(allow_none=True)
        if self._old_start_method is None:
            self._old_start_method = "spawn"  # default to spawn
        multiprocessing.set_start_method("spawn", force=self._force) 
[docs]
    def __exit__(self, *args):
        # restore the old start method
        multiprocessing.set_start_method(self._old_start_method, force=True) 
 
[docs]
class _SolverBase(multiprocessing.Process):
    """
    A process that solves the registration PoW problem.
    Args:
        proc_num (int): The number of the process being created.
        num_proc (int): The total number of processes running.
        update_interval (int): The number of nonces to try to solve before checking for a new block.
        finished_queue (multiprocessing.Queue): The queue to put the process number when a process finishes each update_interval. Used for calculating the average time per update_interval across all processes.
        solution_queue (multiprocessing.Queue): The queue to put the solution the process has found during the pow solve.
        newBlockEvent (multiprocessing.Event): The event to set by the main process when a new block is finalized in the network. The solver process will check for the event after each update_interval. The solver process will get the new block hash and difficulty and start solving for a new nonce.
        stopEvent (multiprocessing.Event): The event to set by the main process when all the solver processes should stop. The solver process will check for the event after each update_interval. The solver process will stop when the event is set. Used to stop the solver processes when a solution is found.
        curr_block (multiprocessing.Array): The array containing this process's current block hash. The main process will set the array to the new block hash when a new block is finalized in the network. The solver process will get the new block hash from this array when newBlockEvent is set.
        curr_block_num (multiprocessing.Value): The value containing this process's current block number. The main process will set the value to the new block number when a new block is finalized in the network. The solver process will get the new block number from this value when newBlockEvent is set.
        curr_diff (multiprocessing.Array): The array containing this process's current difficulty. The main process will set the array to the new difficulty when a new block is finalized in the network. The solver process will get the new difficulty from this array when newBlockEvent is set.
        check_block (multiprocessing.Lock): The lock to prevent this process from getting the new block data while the main process is updating the data.
        limit (int): The limit of the pow solve for a valid solution.
    """
    proc_num: int
    num_proc: int
    update_interval: int
    finished_queue: "multiprocessing.Queue"
    solution_queue: "multiprocessing.Queue"
    newBlockEvent: "multiprocessing.Event"
    stopEvent: "multiprocessing.Event"
    hotkey_bytes: bytes
    curr_block: "multiprocessing.Array"
    curr_block_num: "multiprocessing.Value"
    curr_diff: "multiprocessing.Array"
    check_block: "multiprocessing.Lock"
    limit: int
    def __init__(
        self,
        proc_num,
        num_proc,
        update_interval,
        finished_queue,
        solution_queue,
        stopEvent,
        curr_block,
        curr_block_num,
        curr_diff,
        check_block,
        limit,
    ):
        multiprocessing.Process.__init__(self, daemon=True)
        self.proc_num = proc_num
        self.num_proc = num_proc
        self.update_interval = update_interval
        self.finished_queue = finished_queue
        self.solution_queue = solution_queue
        self.newBlockEvent = multiprocessing.Event()
        self.newBlockEvent.clear()
        self.curr_block = curr_block
        self.curr_block_num = curr_block_num
        self.curr_diff = curr_diff
        self.check_block = check_block
        self.stopEvent = stopEvent
        self.limit = limit
[docs]
    def run(self):
        raise NotImplementedError("_SolverBase is an abstract class") 
[docs]
    @staticmethod
    def create_shared_memory() -> (
        tuple["multiprocessing.Array", "multiprocessing.Value", "multiprocessing.Array"]
    ):
        """Creates shared memory for the solver processes to use."""
        curr_block = multiprocessing.Array("h", 32, lock=True)  # byte array
        curr_block_num = multiprocessing.Value("i", 0, lock=True)  # int
        curr_diff = multiprocessing.Array("Q", [0, 0], lock=True)  # [high, low]
        return curr_block, curr_block_num, curr_diff 
 
[docs]
class _Solver(_SolverBase):
[docs]
    def run(self):
        block_number: int
        block_and_hotkey_hash_bytes: bytes
        block_difficulty: int
        nonce_limit = int(math.pow(2, 64)) - 1
        # Start at random nonce
        nonce_start = random.randint(0, nonce_limit)
        nonce_end = nonce_start + self.update_interval
        while not self.stopEvent.is_set():
            if self.newBlockEvent.is_set():
                with self.check_block:
                    block_number = self.curr_block_num.value
                    block_and_hotkey_hash_bytes = bytes(self.curr_block)
                    block_difficulty = _registration_diff_unpack(self.curr_diff)
                self.newBlockEvent.clear()
            # Do a block of nonces
            solution = _solve_for_nonce_block(
                nonce_start,
                nonce_end,
                block_and_hotkey_hash_bytes,
                block_difficulty,
                self.limit,
                block_number,
            )
            if solution is not None:
                self.solution_queue.put(solution)
            try:
                # Send time
                self.finished_queue.put_nowait(self.proc_num)
            except Full:
                pass
            nonce_start = random.randint(0, nonce_limit)
            nonce_start = nonce_start % nonce_limit
            nonce_end = nonce_start + self.update_interval 
 
[docs]
class _CUDASolver(_SolverBase):
    dev_id: int
    tpb: int
    def __init__(
        self,
        proc_num,
        num_proc,
        update_interval,
        finished_queue,
        solution_queue,
        stopEvent,
        curr_block,
        curr_block_num,
        curr_diff,
        check_block,
        limit,
        dev_id: int,
        tpb: int,
    ):
        super().__init__(
            proc_num,
            num_proc,
            update_interval,
            finished_queue,
            solution_queue,
            stopEvent,
            curr_block,
            curr_block_num,
            curr_diff,
            check_block,
            limit,
        )
        self.dev_id = dev_id
        self.tpb = tpb
[docs]
    def run(self):
        block_number: int = 0  # dummy value
        block_and_hotkey_hash_bytes: bytes = b"0" * 32  # dummy value
        block_difficulty: int = int(math.pow(2, 64)) - 1  # dummy value
        nonce_limit = int(math.pow(2, 64)) - 1  # U64MAX
        # Start at random nonce
        nonce_start = random.randint(0, nonce_limit)
        while not self.stopEvent.is_set():
            if self.newBlockEvent.is_set():
                with self.check_block:
                    block_number = self.curr_block_num.value
                    block_and_hotkey_hash_bytes = bytes(self.curr_block)
                    block_difficulty = _registration_diff_unpack(self.curr_diff)
                self.newBlockEvent.clear()
            # Do a block of nonces
            solution = _solve_for_nonce_block_cuda(
                nonce_start,
                self.update_interval,
                block_and_hotkey_hash_bytes,
                block_difficulty,
                self.limit,
                block_number,
                self.dev_id,
                self.tpb,
            )
            if solution is not None:
                self.solution_queue.put(solution)
            try:
                # Signal that a nonce_block was finished using queue
                # send our proc_num
                self.finished_queue.put(self.proc_num)
            except Full:
                pass
            # increase nonce by number of nonces processed
            nonce_start += self.update_interval * self.tpb
            nonce_start = nonce_start % nonce_limit 
 
[docs]
def _solve_for_nonce_block_cuda(
    nonce_start: int,
    update_interval: int,
    block_and_hotkey_hash_bytes: bytes,
    difficulty: int,
    limit: int,
    block_number: int,
    dev_id: int,
    tpb: int,
) -> Optional["POWSolution"]:
    """Tries to solve the POW on a CUDA device for a block of nonces (nonce_start, nonce_start + update_interval * tpb"""
    solution, seal = solve_cuda(
        nonce_start,
        update_interval,
        tpb,
        block_and_hotkey_hash_bytes,
        difficulty,
        limit,
        dev_id,
    )
    if solution != -1:
        # Check if solution is valid (i.e. not -1)
        return POWSolution(solution, block_number, difficulty, seal)
    return None 
[docs]
def _solve_for_nonce_block(
    nonce_start: int,
    nonce_end: int,
    block_and_hotkey_hash_bytes: bytes,
    difficulty: int,
    limit: int,
    block_number: int,
) -> Optional["POWSolution"]:
    """Tries to solve the POW for a block of nonces (nonce_start, nonce_end)"""
    for nonce in range(nonce_start, nonce_end):
        # Create seal.
        seal = _create_seal_hash(block_and_hotkey_hash_bytes, nonce)
        # Check if seal meets difficulty
        if _seal_meets_difficulty(seal, difficulty, limit):
            # Found a solution, save it.
            return POWSolution(nonce, block_number, difficulty, seal)
    return None 
[docs]
def _registration_diff_unpack(packed_diff: "multiprocessing.Array") -> int:
    """Unpacks the packed two 32-bit integers into one 64-bit integer. Little endian."""
    return int(packed_diff[0] << 32 | packed_diff[1]) 
[docs]
def _registration_diff_pack(diff: int, packed_diff: "multiprocessing.Array"):
    """Packs the difficulty into two 32-bit integers. Little endian."""
    packed_diff[0] = diff >> 32
    packed_diff[1] = diff & 0xFFFFFFFF  # low 32 bits 
[docs]
def _hash_block_with_hotkey(block_bytes: bytes, hotkey_bytes: bytes) -> bytes:
    """Hashes the block with the hotkey using Keccak-256 to get 32 bytes"""
    kec = keccak.new(digest_bits=256)
    kec = kec.update(bytearray(block_bytes + hotkey_bytes))
    block_and_hotkey_hash_bytes = kec.digest()
    return block_and_hotkey_hash_bytes 
[docs]
def _update_curr_block(
    curr_diff: "multiprocessing.Array",
    curr_block: "multiprocessing.Array",
    curr_block_num: "multiprocessing.Value",
    block_number: int,
    block_bytes: bytes,
    diff: int,
    hotkey_bytes: bytes,
    lock: "multiprocessing.Lock",
):
    """Updates the current block's information atomically using a lock."""
    with lock:
        curr_block_num.value = block_number
        # Hash the block with the hotkey
        block_and_hotkey_hash_bytes = _hash_block_with_hotkey(block_bytes, hotkey_bytes)
        for i in range(32):
            curr_block[i] = block_and_hotkey_hash_bytes[i]
        _registration_diff_pack(diff, curr_diff) 
[docs]
def get_cpu_count() -> int:
    """Returns the number of CPUs in the system."""
    try:
        return len(os.sched_getaffinity(0))
    except AttributeError:
        # OSX does not have sched_getaffinity
        return os.cpu_count() 
[docs]
@dataclasses.dataclass
class RegistrationStatistics:
    """Statistics for a registration."""
    time_spent_total: float
    rounds_total: int
    time_average: float
    time_spent: float
    hash_rate_perpetual: float
    hash_rate: float
    difficulty: int
    block_number: int
    block_hash: bytes 
[docs]
class RegistrationStatisticsLogger:
    """Logs statistics for a registration."""
    status: Optional[rich_status.Status]
    def __init__(
        self,
        console: Optional[rich_console.Console] = None,
        output_in_place: bool = True,
    ) -> None:
        if console is None:
            console = Console()
        self.console = console
        if output_in_place:
            self.status = self.console.status("Solving")
        else:
            self.status = None
[docs]
    def start(self) -> None:
        if self.status is not None:
            self.status.start() 
[docs]
    def stop(self) -> None:
        if self.status is not None:
            self.status.stop() 
[docs]
    def get_status_message(
        self, stats: RegistrationStatistics, verbose: bool = False
    ) -> str:
        """Generates the status message based on registration statistics."""
        message = (
            "Solving\n"
            + f"Time Spent (total): [bold white]{timedelta(seconds=stats.time_spent_total)}[/bold white]\n"
            + (
                f"Time Spent This Round: {timedelta(seconds=stats.time_spent)}\n"
                + f"Time Spent Average: {timedelta(seconds=stats.time_average)}\n"
                if verbose
                else ""
            )
            + f"Registration Difficulty: [bold white]{millify(stats.difficulty)}[/bold white]\n"
            + f"Iters (Inst/Perp): [bold white]{get_human_readable(stats.hash_rate, 'H')}/s / "
            + f"{get_human_readable(stats.hash_rate_perpetual, 'H')}/s[/bold white]\n"
            + f"Block Number: [bold white]{stats.block_number}[/bold white]\n"
            + f"Block Hash: [bold white]{stats.block_hash.encode('utf-8')}[/bold white]\n"
        )
        return message 
[docs]
    def update(self, stats: RegistrationStatistics, verbose: bool = False) -> None:
        if self.status is not None:
            self.status.update(self.get_status_message(stats, verbose=verbose))
        else:
            self.console.log(self.get_status_message(stats, verbose=verbose)) 
 
[docs]
def _solve_for_difficulty_fast(
    subtensor: "Subtensor",
    wallet: "Wallet",
    netuid: int,
    output_in_place: bool = True,
    num_processes: Optional[int] = None,
    update_interval: Optional[int] = None,
    n_samples: int = 10,
    alpha_: float = 0.80,
    log_verbose: bool = False,
) -> Optional[POWSolution]:
    """
    Solves the POW for registration using multiprocessing.
    Args:
        subtensor (bittensor.core.subtensor.Subtensor): Subtensor instance to connect to for block information and to submit.
        wallet (bittensor_wallet.Wallet): wallet to use for registration.
        netuid (int): The netuid of the subnet to register to.
        output_in_place (bool): If true, prints the status in place. Otherwise, prints the status on a new line.
        num_processes (int): Number of processes to use.
        update_interval (int): Number of nonces to solve before updating block information.
        n_samples (int): The number of samples of the hash_rate to keep for the EWMA.
        alpha_ (float): The alpha for the EWMA for the hash_rate calculation.
        log_verbose (bool): If true, prints more verbose logging of the registration metrics.
    Note: The hash rate is calculated as an exponentially weighted moving average in order to make the measure more robust.
    Note: We can also modify the update interval to do smaller blocks of work, while still updating the block information after a different number of nonces, to increase the transparency of the process while still keeping the speed.
    """
    if num_processes is None:
        # get the number of allowed processes for this process
        num_processes = min(1, get_cpu_count())
    if update_interval is None:
        update_interval = 50_000
    limit = int(math.pow(2, 256)) - 1
    curr_block, curr_block_num, curr_diff = _Solver.create_shared_memory()
    # Establish communication queues
    # See the _Solver class for more information on the queues.
    stopEvent = multiprocessing.Event()
    stopEvent.clear()
    solution_queue = multiprocessing.Queue()
    finished_queues = [multiprocessing.Queue() for _ in range(num_processes)]
    check_block = multiprocessing.Lock()
    hotkey_bytes = (
        wallet.coldkeypub.public_key if netuid == -1 else wallet.hotkey.public_key
    )
    # Start consumers
    solvers = [
        _Solver(
            i,
            num_processes,
            update_interval,
            finished_queues[i],
            solution_queue,
            stopEvent,
            curr_block,
            curr_block_num,
            curr_diff,
            check_block,
            limit,
        )
        for i in range(num_processes)
    ]
    # Get first block
    block_number, difficulty, block_hash = _get_block_with_retry(
        subtensor=subtensor, netuid=netuid
    )
    block_bytes = bytes.fromhex(block_hash[2:])
    old_block_number = block_number
    # Set to current block
    _update_curr_block(
        curr_diff,
        curr_block,
        curr_block_num,
        block_number,
        block_bytes,
        difficulty,
        hotkey_bytes,
        check_block,
    )
    # Set new block events for each solver to start at the initial block
    for worker in solvers:
        worker.newBlockEvent.set()
    for worker in solvers:
        worker.start()  # start the solver processes
    start_time = time.time()  # time that the registration started
    time_last = start_time  # time that the last work blocks completed
    curr_stats = RegistrationStatistics(
        time_spent_total=0.0,
        time_average=0.0,
        rounds_total=0,
        time_spent=0.0,
        hash_rate_perpetual=0.0,
        hash_rate=0.0,
        difficulty=difficulty,
        block_number=block_number,
        block_hash=block_hash,
    )
    start_time_perpetual = time.time()
    logger = RegistrationStatisticsLogger(output_in_place=output_in_place)
    logger.start()
    solution = None
    hash_rates = [0] * n_samples  # The last n true hash_rates
    weights = [alpha_**i for i in range(n_samples)]  # weights decay by alpha
    while netuid == -1 or not subtensor.is_hotkey_registered(
        netuid=netuid, hotkey_ss58=wallet.hotkey.ss58_address
    ):
        # Wait until a solver finds a solution
        try:
            solution = solution_queue.get(block=True, timeout=0.25)
            if solution is not None:
                break
        except Empty:
            # No solution found, try again
            pass
        # check for new block
        old_block_number = _check_for_newest_block_and_update(
            subtensor=subtensor,
            netuid=netuid,
            hotkey_bytes=hotkey_bytes,
            old_block_number=old_block_number,
            curr_diff=curr_diff,
            curr_block=curr_block,
            curr_block_num=curr_block_num,
            curr_stats=curr_stats,
            update_curr_block=_update_curr_block,
            check_block=check_block,
            solvers=solvers,
        )
        num_time = 0
        for finished_queue in finished_queues:
            try:
                proc_num = finished_queue.get(timeout=0.1)
                num_time += 1
            except Empty:
                continue
        time_now = time.time()  # get current time
        time_since_last = time_now - time_last  # get time since last work block(s)
        if num_time > 0 and time_since_last > 0.0:
            # create EWMA of the hash_rate to make measure more robust
            hash_rate_ = (num_time * update_interval) / time_since_last
            hash_rates.append(hash_rate_)
            hash_rates.pop(0)  # remove the 0th data point
            curr_stats.hash_rate = sum(
                [hash_rates[i] * weights[i] for i in range(n_samples)]
            ) / (sum(weights))
            # update time last to now
            time_last = time_now
            curr_stats.time_average = (
                curr_stats.time_average * curr_stats.rounds_total
                + curr_stats.time_spent
            ) / (curr_stats.rounds_total + num_time)
            curr_stats.rounds_total += num_time
        # Update stats
        curr_stats.time_spent = time_since_last
        new_time_spent_total = time_now - start_time_perpetual
        curr_stats.hash_rate_perpetual = (
            curr_stats.rounds_total * update_interval
        ) / new_time_spent_total
        curr_stats.time_spent_total = new_time_spent_total
        # Update the logger
        logger.update(curr_stats, verbose=log_verbose)
    # exited while, solution contains the nonce or wallet is registered
    stopEvent.set()  # stop all other processes
    logger.stop()
    # terminate and wait for all solvers to exit
    _terminate_workers_and_wait_for_exit(solvers)
    return solution 
[docs]
@retry(Exception, tries=3, delay=1)
def _get_block_with_retry(
    subtensor: "Subtensor", netuid: int
) -> tuple[int, int, bytes]:
    """
    Gets the current block number, difficulty, and block hash from the substrate node.
    Args:
        subtensor (bittensor.core.subtensor.Subtensor): The subtensor object to use to get the block number, difficulty, and block hash.
        netuid (int): The netuid of the network to get the block number, difficulty, and block hash from.
    Returns:
        tuple[int, int, bytes]
        block_number (int): The current block number.
        difficulty (int): The current difficulty of the subnet.
        block_hash (bytes): The current block hash.
    Raises:
        Exception: If the block hash is None.
        ValueError: If the difficulty is None.
    """
    block_number = subtensor.get_current_block()
    difficulty = 1_000_000 if netuid == -1 else subtensor.difficulty(netuid=netuid)
    block_hash = subtensor.get_block_hash(block_number)
    if block_hash is None:
        raise Exception(
            "Network error. Could not connect to substrate to get block hash"
        )
    if difficulty is None:
        raise ValueError("Chain error. Difficulty is None")
    return block_number, difficulty, block_hash 
[docs]
def _check_for_newest_block_and_update(
    subtensor: "Subtensor",
    netuid: int,
    old_block_number: int,
    hotkey_bytes: bytes,
    curr_diff: "multiprocessing.Array",
    curr_block: "multiprocessing.Array",
    curr_block_num: "multiprocessing.Value",
    update_curr_block: "Callable",
    check_block: "multiprocessing.Lock",
    solvers: Union[list["_Solver"], list["_CUDASolver"]],
    curr_stats: "RegistrationStatistics",
) -> int:
    """
    Checks for a new block and updates the current block information if a new block is found.
    Args:
        subtensor (bittensor.core.subtensor.Subtensor): The subtensor object to use for getting the current block.
        netuid (int): The netuid to use for retrieving the difficulty.
        old_block_number (int): The old block number to check against.
        hotkey_bytes (bytes): The bytes of the hotkey's pubkey.
        curr_diff (multiprocessing.Array): The current difficulty as a multiprocessing array.
        curr_block (multiprocessing.Array): Where the current block is stored as a multiprocessing array.
        curr_block_num (multiprocessing.Value): Where the current block number is stored as a multiprocessing value.
        update_curr_block (typing.Callable): A function that updates the current block.
        check_block (multiprocessing.Lock): A mp lock that is used to check for a new block.
        solvers (list[bittensor.utils.registration._Solver]): A list of solvers to update the current block for.
        curr_stats (bittensor.utils.registration.RegistrationStatistics): The current registration statistics to update.
    Returns:
        (int) The current block number.
    """
    block_number = subtensor.get_current_block()
    if block_number != old_block_number:
        old_block_number = block_number
        # update block information
        block_number, difficulty, block_hash = _get_block_with_retry(
            subtensor=subtensor, netuid=netuid
        )
        block_bytes = bytes.fromhex(block_hash[2:])
        update_curr_block(
            curr_diff,
            curr_block,
            curr_block_num,
            block_number,
            block_bytes,
            difficulty,
            hotkey_bytes,
            check_block,
        )
        # Set new block events for each solver
        for worker in solvers:
            worker.newBlockEvent.set()
        # update stats
        curr_stats.block_number = block_number
        curr_stats.block_hash = block_hash
        curr_stats.difficulty = difficulty
    return old_block_number 
[docs]
def _solve_for_difficulty_fast_cuda(
    subtensor: "Subtensor",
    wallet: "Wallet",
    netuid: int,
    output_in_place: bool = True,
    update_interval: int = 50_000,
    tpb: int = 512,
    dev_id: Union[list[int], int] = 0,
    n_samples: int = 10,
    alpha_: float = 0.80,
    log_verbose: bool = False,
) -> Optional["POWSolution"]:
    """
    Solves the registration fast using CUDA.
    Args:
        subtensor (bittensor.core.subtensor.Subtensor): The subtensor node to grab blocks.
        wallet (bittensor_wallet.Wallet): The wallet to register.
        netuid (int): The netuid of the subnet to register to.
        output_in_place (bool) If true, prints the output in place, otherwise prints to new lines.
        update_interval (int): The number of nonces to try before checking for more blocks.
        tpb (int): The number of threads per block. CUDA param that should match the GPU capability
        dev_id (Union[list[int], int]): The CUDA device IDs to execute the registration on, either a single device or a list of devices.
        n_samples (int): The number of samples of the hash_rate to keep for the EWMA.
        alpha_ (float): The alpha for the EWMA for the hash_rate calculation.
        log_verbose (bool): If true, prints more verbose logging of the registration metrics.
    Note: The hash rate is calculated as an exponentially weighted moving average in order to make the measure more robust.
    """
    if isinstance(dev_id, int):
        dev_id = [dev_id]
    elif dev_id is None:
        dev_id = [0]
    if update_interval is None:
        update_interval = 50_000
    if not torch.cuda.is_available():
        raise Exception("CUDA not available")
    limit = int(math.pow(2, 256)) - 1
    # Set mp start to use spawn so CUDA doesn't complain
    with _UsingSpawnStartMethod(force=True):
        curr_block, curr_block_num, curr_diff = _CUDASolver.create_shared_memory()
        # Create a worker per CUDA device
        num_processes = len(dev_id)
        # Establish communication queues
        stopEvent = multiprocessing.Event()
        stopEvent.clear()
        solution_queue = multiprocessing.Queue()
        finished_queues = [multiprocessing.Queue() for _ in range(num_processes)]
        check_block = multiprocessing.Lock()
        hotkey_bytes = wallet.hotkey.public_key
        # Start workers
        solvers = [
            _CUDASolver(
                i,
                num_processes,
                update_interval,
                finished_queues[i],
                solution_queue,
                stopEvent,
                curr_block,
                curr_block_num,
                curr_diff,
                check_block,
                limit,
                dev_id[i],
                tpb,
            )
            for i in range(num_processes)
        ]
        # Get first block
        block_number, difficulty, block_hash = _get_block_with_retry(
            subtensor=subtensor, netuid=netuid
        )
        block_bytes = bytes.fromhex(block_hash[2:])
        old_block_number = block_number
        # Set to current block
        _update_curr_block(
            curr_diff,
            curr_block,
            curr_block_num,
            block_number,
            block_bytes,
            difficulty,
            hotkey_bytes,
            check_block,
        )
        # Set new block events for each solver to start at the initial block
        for worker in solvers:
            worker.newBlockEvent.set()
        for worker in solvers:
            worker.start()  # start the solver processes
        start_time = time.time()  # time that the registration started
        time_last = start_time  # time that the last work blocks completed
        curr_stats = RegistrationStatistics(
            time_spent_total=0.0,
            time_average=0.0,
            rounds_total=0,
            time_spent=0.0,
            hash_rate_perpetual=0.0,
            hash_rate=0.0,  # EWMA hash_rate (H/s)
            difficulty=difficulty,
            block_number=block_number,
            block_hash=block_hash,
        )
        start_time_perpetual = time.time()
        logger = RegistrationStatisticsLogger(output_in_place=output_in_place)
        logger.start()
        hash_rates = [0] * n_samples  # The last n true hash_rates
        weights = [alpha_**i for i in range(n_samples)]  # weights decay by alpha
        solution = None
        while netuid == -1 or not subtensor.is_hotkey_registered(
            netuid=netuid, hotkey_ss58=wallet.hotkey.ss58_address
        ):
            # Wait until a solver finds a solution
            try:
                solution = solution_queue.get(block=True, timeout=0.15)
                if solution is not None:
                    break
            except Empty:
                # No solution found, try again
                pass
            # check for new block
            old_block_number = _check_for_newest_block_and_update(
                subtensor=subtensor,
                netuid=netuid,
                hotkey_bytes=hotkey_bytes,
                curr_diff=curr_diff,
                curr_block=curr_block,
                curr_block_num=curr_block_num,
                old_block_number=old_block_number,
                curr_stats=curr_stats,
                update_curr_block=_update_curr_block,
                check_block=check_block,
                solvers=solvers,
            )
            num_time = 0
            # Get times for each solver
            for finished_queue in finished_queues:
                try:
                    proc_num = finished_queue.get(timeout=0.1)
                    num_time += 1
                except Empty:
                    continue
            time_now = time.time()  # get current time
            time_since_last = time_now - time_last  # get time since last work block(s)
            if num_time > 0 and time_since_last > 0.0:
                # create EWMA of the hash_rate to make measure more robust
                hash_rate_ = (num_time * tpb * update_interval) / time_since_last
                hash_rates.append(hash_rate_)
                hash_rates.pop(0)  # remove the 0th data point
                curr_stats.hash_rate = sum(
                    [hash_rates[i] * weights[i] for i in range(n_samples)]
                ) / (sum(weights))
                # update time last to now
                time_last = time_now
                curr_stats.time_average = (
                    curr_stats.time_average * curr_stats.rounds_total
                    + curr_stats.time_spent
                ) / (curr_stats.rounds_total + num_time)
                curr_stats.rounds_total += num_time
            # Update stats
            curr_stats.time_spent = time_since_last
            new_time_spent_total = time_now - start_time_perpetual
            curr_stats.hash_rate_perpetual = (
                curr_stats.rounds_total * (tpb * update_interval)
            ) / new_time_spent_total
            curr_stats.time_spent_total = new_time_spent_total
            # Update the logger
            logger.update(curr_stats, verbose=log_verbose)
        # exited while, found_solution contains the nonce or wallet is registered
        stopEvent.set()  # stop all other processes
        logger.stop()
        # terminate and wait for all solvers to exit
        _terminate_workers_and_wait_for_exit(solvers)
        return solution 
[docs]
def _terminate_workers_and_wait_for_exit(
    workers: list[Union[multiprocessing.Process, QueueType]],
) -> None:
    for worker in workers:
        if isinstance(worker, QueueType):
            worker.join_thread()
        else:
            try:
                worker.join(3.0)
            except subprocess.TimeoutExpired:
                worker.terminate()
        try:
            worker.close()
        except ValueError:
            worker.terminate() 
[docs]
def create_pow(
    subtensor: "Subtensor",
    wallet: "Wallet",
    netuid: int,
    output_in_place: bool = True,
    cuda: bool = False,
    dev_id: Union[list[int], int] = 0,
    tpb: int = 256,
    num_processes: Optional[int] = None,
    update_interval: Optional[int] = None,
    log_verbose: bool = False,
) -> Optional[dict[str, Any]]:
    """
    Creates a proof of work for the given subtensor and wallet.
    Args:
        subtensor (bittensor.core.subtensor.Subtensor): The subtensor to create a proof of work for.
        wallet (bittensor_wallet.Wallet): The wallet to create a proof of work for.
        netuid (int): The netuid for the subnet to create a proof of work for.
        output_in_place (bool): If true, prints the progress of the proof of work to the console in-place. Meaning the progress is printed on the same lines. Default is ``True``.
        cuda (bool): If true, uses CUDA to solve the proof of work. Default is ``False``.
        dev_id (Union[List[int], int]): The CUDA device id(s) to use. If cuda is true and dev_id is a list, then multiple CUDA devices will be used to solve the proof of work. Default is ``0``.
        tpb (int): The number of threads per block to use when solving the proof of work. Should be a multiple of 32. Default is ``256``.
        num_processes (Optional[int]): The number of processes to use when solving the proof of work. If None, then the number of processes is equal to the number of CPU cores. Default is None.
        update_interval (Optional[int]): The number of nonces to run before checking for a new block. Default is ``None``.
        log_verbose (bool): If true, prints the progress of the proof of work more verbosely. Default is ``False``.
    Returns:
        Optional[Dict[str, Any]]: The proof of work solution or None if the wallet is already registered or there is a different error.
    Raises:
       ValueError: If the subnet does not exist.
    """
    if netuid != -1:
        if not subtensor.subnet_exists(netuid=netuid):
            raise ValueError(f"Subnet {netuid} does not exist.")
    if cuda:
        solution: Optional[POWSolution] = _solve_for_difficulty_fast_cuda(
            subtensor,
            wallet,
            netuid=netuid,
            output_in_place=output_in_place,
            dev_id=dev_id,
            tpb=tpb,
            update_interval=update_interval,
            log_verbose=log_verbose,
        )
    else:
        solution: Optional[POWSolution] = _solve_for_difficulty_fast(
            subtensor,
            wallet,
            netuid=netuid,
            output_in_place=output_in_place,
            num_processes=num_processes,
            update_interval=update_interval,
            log_verbose=log_verbose,
        )
    return solution