bittensor.core.tensor#
Attributes#
Classes#
Functions#
| 
 | Casts the raw value to a string representing the numpy data type, or the torch data type if using torch. | 
| 
 | Casts the raw value to a string representing the tensor shape. | 
Module Contents#
- class bittensor.core.tensor.DTypes(*args, **kwargs)[source]#
- Bases: - dict- dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s - (key, value) pairs - dict(iterable) -> new dictionary initialized as if via:
- d = {} for k, v in iterable: - d[k] = v 
- dict(**kwargs) -> new dictionary initialized with the name=value pairs
- in the keyword argument list. For example: dict(one=1, two=2) 
 - Initialize self. See help(type(self)) for accurate signature. 
- bittensor.core.tensor.dtypes#
- bittensor.core.tensor.cast_dtype(raw)[source]#
- Casts the raw value to a string representing the numpy data type, or the torch data type if using torch. - Parameters:
- raw (Union[None, numpy.dtype, torch.dtype, str]) – The raw value to cast. 
- Returns:
- The string representing the numpy/torch data type. 
- Return type:
- Raises:
- Exception – If the raw value is of an invalid type. 
 
- bittensor.core.tensor.cast_shape(raw)[source]#
- Casts the raw value to a string representing the tensor shape. 
- class bittensor.core.tensor.Tensor(/, **data)[source]#
- Bases: - pydantic.BaseModel- Represents a Tensor object. - Parameters:
 - Create a new model by parsing and validating input data from keyword arguments. - Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. - self is explicitly positional-only to allow self as a field name. - model_config#
- Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict]. 
 - tensor()[source]#
- Return type:
- Union[numpy.ndarray, bittensor.utils.registration.torch.Tensor] 
 
 - deserialize()[source]#
- Deserializes the Tensor object. - Returns:
- The deserialized tensor object. 
- Return type:
- np.array or torch.Tensor 
- Raises:
- Exception – If the deserialization process encounters an error. 
 
 - static serialize(tensor_)[source]#
- Serializes the given tensor. - Parameters:
- tensor (np.array or torch.Tensor) – The tensor to serialize. 
- tensor_ (Union[numpy.ndarray, bittensor.utils.registration.torch.Tensor]) 
 
- Returns:
- The serialized tensor. 
- Return type:
- Raises:
- Exception – If the serialization process encounters an error. 
 
 - _extract_shape#
 - _extract_dtype#